Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physiological Studies of Chlorobiaceae Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria.

Identifieur interne : 000780 ( Main/Exploration ); précédent : 000779; suivant : 000781

Physiological Studies of Chlorobiaceae Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria.

Auteurs : Jennifer Hiras [États-Unis] ; Sunil V. Sharma [Royaume-Uni] ; Vidhyavathi Raman [États-Unis] ; Ryan A J. Tinson [Royaume-Uni] ; Miriam Arbach [Royaume-Uni] ; Dominic F. Rodrigues [Royaume-Uni] ; Javiera Norambuena [États-Unis] ; Chris J. Hamilton [Royaume-Uni] ; Thomas E. Hanson [États-Unis]

Source :

RBID : pubmed:30482829

Descripteurs français

English descriptors

Abstract

Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.IMPORTANCE Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology.

DOI: 10.1128/mBio.01603-18
PubMed: 30482829
PubMed Central: PMC6282198


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Physiological Studies of
<i>Chlorobiaceae</i>
Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria.</title>
<author>
<name sortKey="Hiras, Jennifer" sort="Hiras, Jennifer" uniqKey="Hiras J" first="Jennifer" last="Hiras">Jennifer Hiras</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Sunil V" sort="Sharma, Sunil V" uniqKey="Sharma S" first="Sunil V" last="Sharma">Sunil V. Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raman, Vidhyavathi" sort="Raman, Vidhyavathi" uniqKey="Raman V" first="Vidhyavathi" last="Raman">Vidhyavathi Raman</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tinson, Ryan A J" sort="Tinson, Ryan A J" uniqKey="Tinson R" first="Ryan A J" last="Tinson">Ryan A J. Tinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arbach, Miriam" sort="Arbach, Miriam" uniqKey="Arbach M" first="Miriam" last="Arbach">Miriam Arbach</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rodrigues, Dominic F" sort="Rodrigues, Dominic F" uniqKey="Rodrigues D" first="Dominic F" last="Rodrigues">Dominic F. Rodrigues</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Norambuena, Javiera" sort="Norambuena, Javiera" uniqKey="Norambuena J" first="Javiera" last="Norambuena">Javiera Norambuena</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Chris J" sort="Hamilton, Chris J" uniqKey="Hamilton C" first="Chris J" last="Hamilton">Chris J. Hamilton</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hanson, Thomas E" sort="Hanson, Thomas E" uniqKey="Hanson T" first="Thomas E" last="Hanson">Thomas E. Hanson</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA tehanson@udel.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30482829</idno>
<idno type="pmid">30482829</idno>
<idno type="doi">10.1128/mBio.01603-18</idno>
<idno type="pmc">PMC6282198</idno>
<idno type="wicri:Area/Main/Corpus">000636</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000636</idno>
<idno type="wicri:Area/Main/Curation">000636</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000636</idno>
<idno type="wicri:Area/Main/Exploration">000636</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Physiological Studies of
<i>Chlorobiaceae</i>
Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria.</title>
<author>
<name sortKey="Hiras, Jennifer" sort="Hiras, Jennifer" uniqKey="Hiras J" first="Jennifer" last="Hiras">Jennifer Hiras</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Sunil V" sort="Sharma, Sunil V" uniqKey="Sharma S" first="Sunil V" last="Sharma">Sunil V. Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Raman, Vidhyavathi" sort="Raman, Vidhyavathi" uniqKey="Raman V" first="Vidhyavathi" last="Raman">Vidhyavathi Raman</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tinson, Ryan A J" sort="Tinson, Ryan A J" uniqKey="Tinson R" first="Ryan A J" last="Tinson">Ryan A J. Tinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arbach, Miriam" sort="Arbach, Miriam" uniqKey="Arbach M" first="Miriam" last="Arbach">Miriam Arbach</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rodrigues, Dominic F" sort="Rodrigues, Dominic F" uniqKey="Rodrigues D" first="Dominic F" last="Rodrigues">Dominic F. Rodrigues</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Norambuena, Javiera" sort="Norambuena, Javiera" uniqKey="Norambuena J" first="Javiera" last="Norambuena">Javiera Norambuena</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Chris J" sort="Hamilton, Chris J" uniqKey="Hamilton C" first="Chris J" last="Hamilton">Chris J. Hamilton</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Pharmacy, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hanson, Thomas E" sort="Hanson, Thomas E" uniqKey="Hanson T" first="Thomas E" last="Hanson">Thomas E. Hanson</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA tehanson@udel.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Delaware, Newark, Delaware</wicri:regionArea>
<placeName>
<region type="state">Delaware</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biosynthetic Pathways (genetics)</term>
<term>Chlorobi (genetics)</term>
<term>Chlorobi (metabolism)</term>
<term>Cysteine (analogs & derivatives)</term>
<term>Cysteine (chemistry)</term>
<term>Cysteine (metabolism)</term>
<term>Genome, Bacterial (MeSH)</term>
<term>Glucosamine (analogs & derivatives)</term>
<term>Glucosamine (chemistry)</term>
<term>Glucosamine (metabolism)</term>
<term>Molecular Structure (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chlorobi (génétique)</term>
<term>Chlorobi (métabolisme)</term>
<term>Cystéine (analogues et dérivés)</term>
<term>Cystéine (composition chimique)</term>
<term>Cystéine (métabolisme)</term>
<term>Glucosamine (analogues et dérivés)</term>
<term>Glucosamine (composition chimique)</term>
<term>Glucosamine (métabolisme)</term>
<term>Génome bactérien (MeSH)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Structure moléculaire (MeSH)</term>
<term>Voies de biosynthèse (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Cysteine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Cystéine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cystéine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Chlorobi</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chlorobi</term>
<term>Voies de biosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chlorobi</term>
<term>Cysteine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorobi</term>
<term>Cystéine</term>
<term>Glucosamine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Bacterial</term>
<term>Molecular Structure</term>
<term>Molecular Weight</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome bactérien</term>
<term>Masse moléculaire</term>
<term>Structure moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the
<i>Chlorobiaceae</i>
Here we show that
<i>Chlorobaculum tepidum</i>
synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C
<sub>14</sub>
H
<sub>24</sub>
N
<sub>2</sub>
O
<sub>10</sub>
S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The
<i>Cba. tepidum</i>
LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the
<i>Cba. tepidum</i>
genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all
<i>Chlorobiaceae</i>
examined as well as
<i>Polaribacter</i>
sp. strain MED152, a member of the
<i>Bacteroidetes</i>
A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the
<i>Chlorobiaceae</i>
,
<i>Bacteroidetes</i>
,
<i>Deinococcus-Thermus</i>
, and
<i>Firmicutes</i>
but also by
<i>Acidobacteria</i>
,
<i>Chlamydiae</i>
,
<i>Gemmatimonadetes</i>
, and
<i>Proteobacteria.</i>
Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.
<b>IMPORTANCE</b>
Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30482829</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Physiological Studies of
<i>Chlorobiaceae</i>
Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01603-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.01603-18</ELocationID>
<Abstract>
<AbstractText>Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the
<i>Chlorobiaceae</i>
Here we show that
<i>Chlorobaculum tepidum</i>
synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C
<sub>14</sub>
H
<sub>24</sub>
N
<sub>2</sub>
O
<sub>10</sub>
S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The
<i>Cba. tepidum</i>
LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the
<i>Cba. tepidum</i>
genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all
<i>Chlorobiaceae</i>
examined as well as
<i>Polaribacter</i>
sp. strain MED152, a member of the
<i>Bacteroidetes</i>
A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the
<i>Chlorobiaceae</i>
,
<i>Bacteroidetes</i>
,
<i>Deinococcus-Thermus</i>
, and
<i>Firmicutes</i>
but also by
<i>Acidobacteria</i>
,
<i>Chlamydiae</i>
,
<i>Gemmatimonadetes</i>
, and
<i>Proteobacteria.</i>
Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.
<b>IMPORTANCE</b>
Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology.</AbstractText>
<CopyrightInformation>Copyright © 2018 Hiras et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hiras</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Sunil V</ForeName>
<Initials>SV</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Raman</LastName>
<ForeName>Vidhyavathi</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tinson</LastName>
<ForeName>Ryan A J</ForeName>
<Initials>RAJ</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arbach</LastName>
<ForeName>Miriam</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodrigues</LastName>
<ForeName>Dominic F</ForeName>
<Initials>DF</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Norambuena</LastName>
<ForeName>Javiera</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton</LastName>
<ForeName>Chris J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hanson</LastName>
<ForeName>Thomas E</ForeName>
<Initials>TE</Initials>
<Identifier Source="ORCID">0000-0002-1967-5986</Identifier>
<AffiliationInfo>
<Affiliation>School of Marine Science and Policy and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA tehanson@udel.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C543521">bacillithiol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N08U5BOQ1K</RegistryNumber>
<NameOfSubstance UI="D005944">Glucosamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>mBio. 2019 Jan 15;10(1):</RefSource>
<PMID Version="1">30647158</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="N">Biosynthetic Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019414" MajorTopicYN="N">Chlorobi</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="N">Genome, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005944" MajorTopicYN="N">Glucosamine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Chlorobaculum tepidum </Keyword>
<Keyword MajorTopicYN="Y">cellular redox status</Keyword>
<Keyword MajorTopicYN="Y">chlorobiaceae</Keyword>
<Keyword MajorTopicYN="Y">low molecular weight thiol</Keyword>
<Keyword MajorTopicYN="Y">sulfur</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30482829</ArticleId>
<ArticleId IdType="pii">mBio.01603-18</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.01603-18</ArticleId>
<ArticleId IdType="pmc">PMC6282198</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Aug;75(16):5209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2015 May;65(Pt 5):1426-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25667398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2014 Jan;82(1):316-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Nov;94(4):756-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25213752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1983;91:49-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6855597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Sep;72(3):471-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2013 Nov 4;14(16):2160-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Nov;81(21):7560-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 May 20;1597(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12009411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2008 Nov;190(5):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1966 Apr;55(4):928-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5219700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Dec 1;312 ( Pt 2):465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8526857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;251:148-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2009 Nov;191(11):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19784828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Jun;67(6):2538-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Jun;104(2-3):163-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20143161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Mar;133(3):1126-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">417060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Oct;116(2-3):315-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9509-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1987;25:81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11542078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2011 Jul 25;50(31):7101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21751306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Apr 1;451(1):69-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23256780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 20;9(1):e85625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24465625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6482-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Feb;91(4):706-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24330391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Sep;5(9):625-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19578333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4397-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11287671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 May;177(9):2583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7730296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4486-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27335466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;143:85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3657565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1997 Sep;50(9):734-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9360617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 27;8(11):e82345</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24312414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Dec 18;350(6267):1541-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comb Chem. 2008 Jan-Feb;10(1):69-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18020422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Jun;104(2-3):245-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20130996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Jan;175(2):474-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8093448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1984 Sep;29(3):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6237955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Apr;178(7):1990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Feb 20;28(6):445-462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):123-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20712413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Jul 20;21(3):357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24313874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):753-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Dec;191(24):7520-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Mar 16;6:187</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25852656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2009 Aug;155(Pt 8):2766-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3182-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Dec 7;43(48):15195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15568811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2016 Apr;10(4):833-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26325358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2011 May 24;2:116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21833341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12508-12511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28786519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jul 31;40(30):9023-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2008 Dec;25(6):1091-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19030604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Mar;154(Pt 3):818-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18310028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Aug;178(15):4742-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2017 Nov 17;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29150497</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
<region>
<li>Delaware</li>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Delaware">
<name sortKey="Hiras, Jennifer" sort="Hiras, Jennifer" uniqKey="Hiras J" first="Jennifer" last="Hiras">Jennifer Hiras</name>
</region>
<name sortKey="Hanson, Thomas E" sort="Hanson, Thomas E" uniqKey="Hanson T" first="Thomas E" last="Hanson">Thomas E. Hanson</name>
<name sortKey="Hanson, Thomas E" sort="Hanson, Thomas E" uniqKey="Hanson T" first="Thomas E" last="Hanson">Thomas E. Hanson</name>
<name sortKey="Norambuena, Javiera" sort="Norambuena, Javiera" uniqKey="Norambuena J" first="Javiera" last="Norambuena">Javiera Norambuena</name>
<name sortKey="Raman, Vidhyavathi" sort="Raman, Vidhyavathi" uniqKey="Raman V" first="Vidhyavathi" last="Raman">Vidhyavathi Raman</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Sharma, Sunil V" sort="Sharma, Sunil V" uniqKey="Sharma S" first="Sunil V" last="Sharma">Sunil V. Sharma</name>
</noRegion>
<name sortKey="Arbach, Miriam" sort="Arbach, Miriam" uniqKey="Arbach M" first="Miriam" last="Arbach">Miriam Arbach</name>
<name sortKey="Hamilton, Chris J" sort="Hamilton, Chris J" uniqKey="Hamilton C" first="Chris J" last="Hamilton">Chris J. Hamilton</name>
<name sortKey="Rodrigues, Dominic F" sort="Rodrigues, Dominic F" uniqKey="Rodrigues D" first="Dominic F" last="Rodrigues">Dominic F. Rodrigues</name>
<name sortKey="Tinson, Ryan A J" sort="Tinson, Ryan A J" uniqKey="Tinson R" first="Ryan A J" last="Tinson">Ryan A J. Tinson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000780 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000780 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30482829
   |texte=   Physiological Studies of Chlorobiaceae Suggest that Bacillithiol Derivatives Are the Most Widespread Thiols in Bacteria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30482829" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020